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Abstract: There is still a problem in neutrino physics related to the configuration of neutrino masses: Are neutrinos arranged 

by masses following the Standard Model as three generations of fundamental particles, Gen III>Gen II>Gen I, thus forming a 

structural-normal hierarchy, or deviate from that principle? The biggest obstacle that is still present is the sign of the absolute 

value of the difference of the square of neutrino masses. It was avoided by applying the theory of neutrino oscillation 

probability for each structure of the neutrino mass hierarchy. With such theoretical approach the equation of motion was 

derived for each structure in which Dirac CP violation phase appeared as an unknown quantity. This enables direct calculation 

of the explicit value for the Dirac CP violation phase. Two examples were analyzed: The first example is devoted to the normal 

mass ordering and the second one is devoted to the inverted mass ordering. The data used for theoretical calculations presented 

in this paper are obtained on the basis of the latest reassessed data by processing the results of experimental measurements. On 

the basis of the performed calculations, normal mass ordering is unconditionally excluded as a potential option regarding the 

neutrino mass ordering in nature. On the basis of the derived equation of neutrino motion, a possible numerical value of the 

Dirac CP violation phase and Jarlskog invariant is found. 

Keywords: Special Relativity, Leptons, Ordinary Neutrino, Neutrino Mass and Mixing, PMNS Matrix, Jarlskog Invariant, 

Dirac CP Phase 

 

1. Introduction 

The nature of neutrinos related to neutrino flavor 

oscillations was experimentally resolved [1-4], which made it 

clear that neutrinos could possess mass. The entire theory on 

the oscillations of neutrino flavor states is based on the 

application of the unitary PMNS mixing matrix containing 

parameters which connect flavor eigenstates with mass 

eigenstates. Those parameters provide mismatches between 

flavor states and mass eigenstates that are necessary for 

establishing oscillations between certain neutrino flavor states. 

In the standard scenario, the three neutrinos 1 2 3, ,ν ν ν are 

known to have relative masses measured as 2 2 2
21 2 1m m m∆ = −  

and 
2 2 2
31 3 1m m m∆ = − . In neutrino physics, the sign of 2

31m∆ is 

still debatable and unspecified as it has not been measured 

yet, and that allows two different configurations for the 

masses: either 1 2 3m m m< < (normal mass ordering) or 

3 1 2.m m m< < (inverted mass ordering). The dilemmas in 

neutrino physics related to the sign of 2
31m∆ still present an 

obstacle for defining the neutrino mass ordering. However, 

we will see that the precise definition of the mass splittings 

between neutrino mass eigenstates, which is done in the latest 

analysis of experimental data [10], can be of crucial 

importance for defining the nature of neutrino mass hierarchy. 

The Standard Model has three generations of fundamental 

matter particles. Three generations of the quark and charged 

lepton mass show a hierarchical structure: Gen III > Gen II> 

Gen I. Owing to that, there is a belief and it is considered that 

neutrinos may follow such hierarchical structure. Thus, a 

justified question is raised: Does neutrino mass show the 

same structure? 

And, owing to that and in relation to that, it should be 

noted that there are more open questions in neutrino physics 

that are waiting to be answered [1-6]: 
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Are squared neutrino masses ordered normally
2 2 2
1 2 3m m m< <  or are they inverted 2 2 2

3 1 2m m m< < ? 

What is the numerical value of the Dirac CP violation 

phase? 

What is the numerical value of the Jarlskog invariant? 

What is the lowest neutrino mass? What is the absolute 

mass of a neutrino? 

Do neutrinos and antineutrinos behave differently? Is a 

neutrino its own antiparticle? 

In the researches presented in this paper, we will deal with 

the matters related to the listed points 1, 2 and 3. 

2. Defining Basic Relations in Neutrino 

Physics 

Let the wavelengths of oscillations be denoted by 

( ), 1, 2,3ijL i j = , linking them to the differences of the 

appropriate phases ( ), 1, 2,3ij i jϕ = , and then relations for 

the processes of disappearances can be written as follows: 

Normal mass ordering, 1 2 3m m m< <  

( ) ( )

( ) ( )

( ) ( )

12
1 2 12 1 2

13
1 3 13 1 3

23
2 3 23 2 3

2

2 ,

2

e e

e e

L
p p

L
p p

L
p p

µ

τ

µ τ µ

ν ν ν ϕ ϕ ϕ π

ν ν ν ϕ ϕ ϕ π

ν ν ν ϕ ϕ ϕ π

→ → → − = = − =

→ → → − = = − =

→ → → − = = − =

ℏ

ℏ

ℏ

        (1) 

The first relation presents the process of oscillation of the 

electron neutrino through muon neutrino when one full 

oscillation is performed 12L . 

The second relation presents the process of oscillation of 

the electron neutrino through tau neutrino when one full 

oscillation is performed 13L . 

The third relation presents the process of oscillation of the 

muon neutrino through tau neutrino when one full oscillation 

is performed 23L . 

The momentum 1p  is linked to mass eigenstate 1m , the 

momentum 2p  is linked to mass eigenstate 2m , the 

momentum 3p  is linked to mass eigenstate 3m . From these 

equations (1), the link between the wavelengths of 

oscillations is obtained and the corresponding difference of 

the momentums with the Planck constant: 

( )12 1 2L p p h− =                            (2) 

( )13 1 3L p p h− =                             (3) 

( )23 2 3L p p h− =                             (4) 

Where it can be seen that the product of wavelengths of 

neutrino oscillations and corresponding differences of the 

momentums equals the Planck constant. 

From these equations, a link between wavelengths of 

oscillations for normal mass ordering (NO) is obtained: 

12 23 13
13 12 23

1 1 1
; L L L

L L L
= + > >                 (5) 

In further research, we form the differences of phases of 

mass eigenstates on the distance 12X L= from the source of 

the neutrino beam, moving through a physical vacuum, and 

they can be described by following equations: 

( ) ( ) ( ) ( )

( )

12 12 12
12 1 2 1 2 2 1

2 4 2 4 3 3
2 2 212 2 1 12 12
2 1 212 2

2 42 4 2 4
31 2

3 2 1 1 2 32 2 2

1 1

2
2 22 2

; 1, 1, 1.
2 2 2

L L L
p p E c E c E c

L m c m c L c L cE
m m m

c E EE E

m cm c m c
m m m

E E E

ϕ δ δ δ δ

π

δ δ δ

   = − = − − − = −   

 
= − = − = ∆ =  

 

> > = << = << = <<

ℏ ℏ ℏ

ℏ ℏ ℏ
                                         (6) 

( ) ( )
23

2 3212 12 12
23 2 3 3 2 23 2

21

2 .
2

mL L L c
p p E c m

E m
ϕ δ δ π ∆

 = − = − = ∆ =  ∆ℏ ℏ ℏ
                                        (7) 

( ) ( )
23

2 3112 12 12
13 1 3 3 1 31 2

21

2
2

mL L L c
p p E c m

E m
ϕ δ δ π ∆

 = − = − = ∆ =  ∆ℏ ℏ ℏ
                                             (8) 

Where c is the speed of light, and 2h π=ℏ . And one 

more equation can be written: 

2 2 2
21 32 31m m m∆ + ∆ = ∆                            (9) 

Inverted mass ordering, 3 1 2m m m< <  

( ) ( )

( ) ( )

( ) ( )

12
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31
3 1 31 3 1

32
3 2 32 3 2

2

2 ,
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ℏ

ℏ

ℏ

     (10) 

The first relation describes the process of oscillations of 

the electron neutrino through muon neutrino when one full 
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oscillation is performed 12L . 

The second relation presents the process of oscillations of 

the electron neutrino through tau neutrino when one full 

oscillation is performed 31L . 

The third relation presents the process of oscillations of the 

muon neutrino through tau neutrino when one full oscillation 

is performed 32L . 

The momentum 1p is linked to the mass eigenstate 1m , the 

momentum 2p is linked to the mass eigenstate 2m , the 

momentum 3p is linked to the mass eigenstate 3m . The 

equations signify that the product of wavelengths of neutrino 

oscillations and corresponding differences of the momentums 

equals the Planck constant. 

From the relations (10), the following equations directly 

follow: 

( )12 1 2L p p h− =                              (11) 

( )31 3 1L p p h− =                                (12) 

( )32 3 2L p p h− =                               (13) 

From which it can be seen that the product of wavelengths 

of neutrino oscillations and corresponding differences of the 

momentums equals the Planck constant h . 

From these equations, the link between wavelengths of 

oscillations for inverted mass ordering (IMO) is obtained: 

32 31 12
32 12 31

1 1 1
; L L L

L L L
= + < <               (14) 

Since wavelengths of oscillations are directly proportional 

to the neutrino energy, these relations apply to any neutrino 

energy, and they change in proportion to the energy, which 

should be taken into account when this relation is applied. 

Phase differences of mass eigenstates on the distance 

12X L= from the source of the neutrino beam, moving 

through a vacuum, can be described by following equations: 

( ) ( )
3

212 12 12
12 1 2 2 1 21

2 42 4 2 4
31 2

3 1 2 1 2 32 2 2

2
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; 1, 1, 1.
2 2 2
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                                           (16) 

( ) ( )
23

2 1312 12 12
31 3 1 1 3 13 2

21

2
2

mL L L c
p p E c m

E m
ϕ δ δ π ∆
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                                           (17) 

Where c is the speed of light, and 2h π=ℏ . And one 

more equation can be written: 

2 2 2
21 13 23m m m∆ + ∆ = ∆                          (18) 

3. Application of the 
PDG
PMNSU  Mixing Matrix 

In the processes known as neutrino flavor oscillations, the 

Dirac CP violation phase CPδ  is unequivocally singled out as 

the cause of those oscillations in the propagation of the neutrino 

beam through the physical vacuum. For that reason, there arises 

the question of writing the equation of motion in which CPδ
would appear as an unknown quantity. On the basis of that 

equation, it would be possible to determine that unknown 

quantity. So far, there appears to be only one way to derive 

equations of motion for a neutrino beam, and it is related to the 

use of the equations of the neutrino oscillations probabilities. 

The procedure for deriving those equations is given here. 

3.1. The Case of Normal Hierarchy of Neutrino Mass (NO) 

In this case, the matrix PDG
PMNSU is used [5, 8, 9, 11, 12] 

12 13 12 13 131 2 3

1 2 3 12 23 12 23 13 12 23 12 23 13 13 23

1 2 3 12 23 12 23 13 12 23 12 23 13 13 23

1 2

CP

CP CP
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C

i

e e e
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e e

i

c c s c s eU U U
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U U U s s c c s e c s s c s e c c

U U Je

A Be

δ

δ δ
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δ δ
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δ

δ

−

−
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= − − 3

3
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i
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C De U
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δ
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τ

 
 
 −
 
 − − −
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                             (19) 

where the mixing angles are taken into consideration [10]: 
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0 0 0.130
12 23 13 0.5334.3 1 , 49.26 0.79 , 8.53 ,

cos , sin ; , 1,2,3.ij ij ij ijc s i j

θ θ θ
θ θ

+
−= ± = ± =

= = =
 

In order to obtain an explicit numerical value of CPδ , the following unconditional rule will be applied: The sum of the 

probabilities of three neutrino oscillations during the transition , ,e e e eµ τν ν ν ν ν ν→ → → , at a distance from the source equal 

to the entire wavelength of oscillations in the value of 12X L= , during the process of the disappearance in transition 

e eµν ν ν→ → , in the propagation of the neutrino beam through vacuum (as it can be seen, the matter effect is excluded in 

these considerations), is equal to one. 

P. F. de Salas [10] provides the following data as well: 

2 0.22 5 2 2 0.02 3 2 2 3 2
21 0.20 31 0.03 327.50 10 , 2.55 10 , 2.475 10m eV m eV m eV+ − + − −

− −∆ = × ∆ = × ∆ = ×                                 (20) 

Taking into consideration the central values from the data (20), we get: 
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31 32
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21 21
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31 32

2 2
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∆ ∆
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= = = =      ∆ ∆   

   ∆ ∆
= = = =      ∆ ∆   

                                                    (21) 

In our considerations, we will use the general formula for neutrino oscillations given in Ref [8, 9]: 

( ) ( ) ( )
2 3 2 3

2

, ,

4 sin 2 Im sin ; , 1, 2,3.
4 2

ji ji

i i j j i i j j
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∆ ∆
→ = − + =∑ ∑

ℏ ℏ

        (22) 

The transition is analysed: , ,e e e eµ τν ν ν ν ν ν→ → →
 

On the basis of formulae (22), the total probability of neutrino oscillations is shown through the equation 

( ) ( ) ( )
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                                    (23) 

And, from the equation (23), the equation of neutrino motion is formed with a condition that the travelled distance of the 

neutrino beam, moving through a vacuum from the source, equals the neutrino wavelength 12X L= . So, it can be written as 
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Inserting data (21), it can be seen that all members of the equation (24), with no exception, become equal to zero, and that it 

is always the case regardless of the values of the elements of PMNS mixing matrix (19) and their connections with the Dirac 

CP violation phase. 

The complex structure of equations (24) is reduced to an extremely simple form: 

( ) ( )4 cos 2 sin 0 4cos 0 2sin 0 0 0CP CP CP CPW Vδ δ δ δ− ∗ = ∗ − ∗ ∗ =                                    (25) 

Every member of the equation (25) equals zero. That 

means that CP phases can have any arbitrarily taken value 

from the interval ( )0,2π . This result can be considered an 

irrefutable proof that, in nature, neutrinos, in the hierarchy of 

the mass eigenstates, do not belong to the normal mass 

ordering, 1 2 3m m m< < . From this, the only conclusion that 

follows is that, in nature, the neutrino mass eigenstates 

belong to the inverted mass ordering, 3 1 2m m m< < to which 

we shall pay further attention. 

3.2. The Case of Inverted Hierarchy of Neutrino Masses 

(IO) 

And, in this case, the matrix PDG
PMNSU is used [5, 8, 9, 11, 12] 
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                               (26) 

For determining values of PMNS matrix elements, as well as for defining elements of the motion equation, the data given in 

the Ref. [10] are used: 
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To obtain an explicit numerical value of CPδ , the following unconditional rule will be applied: The sum of the probabilities 

of three neutrino oscillations during the transition , ,e e e eµ τν ν ν ν ν ν→ → → , at a distance from the source equal to the 

wavelength of oscillations in the value of 12X L= . For this transition, total oscillation probabilities equal one: 
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From the equation (28), the following form of the motion equation ensues: 
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Where 
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The equation (29) is reduced to the form: 
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Or in a simplified form 

( )3 cos 2 sin 0CP CPJ VJδ δ ς ξ− − =                                                                   (38) 

In this equation, the following expressions equal zero: 

( )1 3 1 3 2 3 2 3 0e e e eU AU U EU U CU U GUµ τ µ τς = − − + =                                                    (39) 

Because 
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3 3 1 23 13 12 23 13 23 13 12 23 13 12 13 13 0eU B U F U J S C C S S C C C C S C C Sµ τ+ − = × + × − =                              (43) 

3 3 2 23 13 12 23 13 23 13 12 23 13 12 13 13 0eU D U H U J S C S S S C C S C S S C Sµ τ+ − = × + × − =                                   (44) 
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Additionally, when the appropriate data from the experimental measurements are included [10], the equation (38) is reduced 

to the form: 

( )3cos 2 sin 0 0CP CPVδ δ− ∗ =                                                                       (45) 

The first point that can be stated is that this equation is 

always satisfied for any value of [ )0, 2CPδ π∈ , so such 

solutions make no physical sense. It is apparent that among 

those solutions in the range [ )0, 2CPδ π∈  there is the right 

unique solution for the value CPδ . From such set of 

countless values, the real and unique value for CPδ  is drawn 

from the set [ )0, 2CPδ π∈  by solving the equation 

3cos 2 sin 0CP CPVδ δ− =                         (46) 

The solution of this equation presents the particular 

solution of the equation (45), and it is in the following 

form: 
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                                        (47) 

It is especially significant to emphasize the existence of the common factor (39) in the equation (38) and it equals zero. 

That is why the equation could be written in the form (45). However, as we have seen, the structure of the equation for 

normal mass ordering (NMO) had a different form: 
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(4 cos 0 2 sin 0) 0 0; ; 0, 0.

CP CP

CP CP

J W VJ V

J VJ W V W V

δ δ
δ δ

∗ − ∗ ∗
= ∗ − ∗ ∗ = ≠ = =

                                        (48) 

And, it, as such, has no sense, because the members in 

parentheses also equal zero. Using the procedure for calculating 

total probability, both for normal mass ordering (NMO) and 

inverted mass ordering (IMO), the same results are obtained. 

Namely, the total probability for normal mass ordering (23) 

( ) ( ) ( ) 1e e e eP P Pµ τν ν ν ν ν ν→ + → + → =           (49) 

In addition, by equating the equation (45) with zero, the 

total probability in the case of inverted mass hierarchy (28) 

becomes 

( ) ( ) ( ) 1e e e eP P Pµ τν ν ν ν ν ν→ + → + → =           (50) 

The first point that we have established is that neutrinos 

belong to the inverted mass hierarchy. Secondly, for that 

hierarchy, we can calculate the numerical value, on the basis 

of (47), for the Dirac CP violation phase 

( ) 0 0
3 60 300CP arctgδ = − = − = +                    (51) 

The obtained formula for the Dirac CP violation phase (47) 

exclusively depends on the mass splittings between the 

neutrino mass eigenstates in a manner established by the 

experiments [1-4] so that neutrino oscillations depend only 

on the mass splittings between the neutrino mass eigenstates. 

 

4. Some Properties of the Parameters of 

the Dirac CP Violation Phase 

If we go back to the relations provided in the formulae 

(47), it can be seen that the formula for the Dirac CP 

violation phase can be expressed through the equivalent 

formula 
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It can also be written that 

31 32sin sinCPtgδ ϕ ϕ= +                      (53) 

As well as 

sin 3 3

cos 2 2sin

CP
CP

CP CP

tg
V

δδ
δ δ

= = =             (54) 

And, from here 
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Returning to equations (16) and (17), it can be written: 
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From the relations (58) and (59), it follows: 
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                                 (60) 

Moreover, we can calculate the numerical value for Jarlskog invariant [22, 23], using for the Dirac CPV phase CPδ  

numerical value (51), which is 

( ) ( )
max 2

12 12 23 23 13 13sin sin 0.029CP CPCP IO CP IO
J J s c s c s cδ δ= = ≈ −                                          (61) 

And this value is in the vicinity of the point minimum in the Ref. NuFIT 5.0 (2020), on the CP violation graph: Jarlskog 

invariant, as it is depicted in Figure 1. 

 

Figure 1. CP-violation: Jarlskog invariant. 

5. The Results Discussion 

The introduced theoretical research is based on the latest data presented in the Ref. [10]. The selection of data processed in 

that manner is given in the Ref. [10], depicting neutrino oscillation parameters summary determined from the global analysis. 

Neutrino oscillations depend only on the mass splittings between the neutrino mass eigenstates. From the Ref. [10] parameters 

for both types of ordering are selected: 
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Normal ordering 

0 0 0.130
12 23 13 0.5334.3 1 , 49.26 0.79 , 8.53 , cos , sin ; , 1,2,3.ij ij ij ijc s i jθ θ θ θ θ+

−= ± = ± = = = =  

2 0.22 5 2 2 0.02 3 2
21 0.20 31 0.037.50 10 , 2.55 10 .m eV m eV+ − + −

− −∆ = × ∆ = ×                                            (62) 

Inverted ordering 

0 0 0.130
12 23 13 0.5334.3 1 , 49.46 0.79 , 8.58 , cos , sin ; , 1,2,3.ij ij ij ijc s i jθ θ θ θ θ+

−= ± = ± = = = =                        (63) 

2 0.22 5 2 2 0.02 3 2
21 0.20 13 0.037.50 10 , 2.45 10m eV m eV+ − + −

− −∆ = × ∆ = ×  

Central values from the best fit 1σ± are taken for calculations: 

Normal ordering 

0 0 0
12 23 1334.3 , 49.26 , 8.53 , cos , sin ; , 1, 2,3.ij ij ij ijc s i jθ θ θ θ θ= = = = = =  

2 5 2 2 3 2 2 3 2
21 31 327.50 10 , 2.55 10 , 2.475 10m eV m eV m eV− − −∆ = × ∆ = × ∆ = ×                                     (64) 

Inverted ordering 

0 0 0
12 23 1334.3 , 49.46 , 8.58 , cos , sin ; , 1,2,3.ij ij ij ijc s i jθ θ θ θ θ= = = = = =                                     (65) 

2 5 2 2 3 2 2 3 2
21 13 237.50 10 , 2.45 10 , 2.525 10m eV m eV m eV− − −∆ = × ∆ = × ∆ = ×  

Applying the adopted values for the parameters (64) and 

(65), we obtained the results (21) and (25) on the basis of 

which normal mass ordering is disfavoured with no 

restrictions. 

On the basis of the motion equation (29), we obtained the 

final equation for the Dirac CP violation phase (45), the 

global solution of which is that there are countless solutions 

for CPδ , which has no physical sense and must be rejected. 

However, the equation (46) offers a particular solution for 

CPδ  and it is essentially singled out from countless solutions 

offered by the equation (45), but being singled out, it 

represents a possible solution that makes physical sense for 

the Dirac CP violation phase (47). 

The main characteristic of the solution for CP phase 

presented by the equation (47) is that it exclusively depends 

on the mass splittings between the neutrino mass eigenstates. 

For the sake of comparison, both obtained numerical 

values, for CP phase (47) and / 1.667CPδ π ≈ , are in the 

vicinity of the local minimum of the inverted ordering, as 

depicted by the graphs given in the Ref.[10]. 

6. Conclusion 

The purpose of this paper was to obtain an explicit value 

of the Dirac CP violation phase. Two examples were 

analyzed: The first example represents normal mass ordering, 

which is unconditionally excluded due to the structure of 

equation (25), and which as such does not offer any solution 

for the CP phase. Furthermore, when it comes to the structure 

of the neutrino mass hierarchy, it can be determined on the 

basis of the formula (14). Our research is based on the data 

obtained on the basis of processing the latest experimental 

measurements exhibited in the Ref. [10].  

On the basis of the complex structure of the motion 

equation (29), we obtained the final simple equation for the 

Dirac CP violation phase (45) whose particular solution for

CPδ has physical sense and it is given in the formula (47). 

It is especially emphasized that the main feature of this 

solution is that it depends exclusively on the mass splittings 

between the neutrino mass eigenstates, which is also the main 

conclusion regarding the existence of the phenomenon of 

neutrino oscillations based on the mass splittings between 

neutrino mass eigenstates as shown by the experiments [1-5]. 

This solution differs from other solutions given in Refs. [13, 

15, 16-19] 

 

Figure 2. Determination of δCP . 
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The graphs shown in Refs. [10, 12] clearly depict that the 

obtained numerical values, for CP phase (47) and 

/ 1.667CPδ π ≈ , are in the vicinity of the local minimum of 

the inverted ordering, as it is depicted in Figure 2. 

Checking the existence of the inverted mass hierarchy 

could also be easily established through the relation (14). The 

theoretical results presented in this paper are exclusively 

related to the data in Ref. [10]. However, if the published 

data [10] change, that could influence the outcome of the 

final derived results. Moreover, it is particularly emphasized 

that there are opinions that neutrino mass hierarchy could 

have a normal structure [11], but there is no clear and 

convincing argumentation for that. Additionally, there is an 

opinion that given result in the Ref. [14] does not provide a 

strong evidence of normal hierarchy over inverted hierarchy. 

That opinion could be checked through comparison of 

wavelengths of oscillations given in the formula (5). 

Finding a numerical value of the Dirac CP violation phase 

(51) would enable the calculation of the three neutrino mass 

eigenstates, as well as the possible effective value of the 

neutrino Majorana mass, which could appear in the process 

of the neutrinoless double beta decay [20, 21]. 
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