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Abstract 

In recent years, with the rapid growth in technology and demand for industrial robots, Automated Guided Vehicles (AGVs) have 

found widespread application in industrial workshops and smart logistics, emerging as a global hot research topic. Due to the 

volatile and complex working environments, the positioning technology of AGV robots is of paramount importance. To address 

the challenges associated with AGV robot positioning, such as significant accumulated errors in wheel odometer and Inertial 

Measurement Unit (IMU), susceptibility of Ultra Wide Band (UWB) positioning accuracy to Non Line of Sight (NLOS) errors, 

as well as the distortion points and drift in point clouds collected by LiDAR during robot motion, a novel positioning method is 

proposed. Initially, Weighted Extended Kalman Filter (W-EKF) is employed for the loosely coupled integration of wheel 

odometer and Ultra Wide Band (UWB) data, transformed into W-EKF pose factors. Subsequently, appropriate addition of 

W-EKF factors is made during the tight coupling of pre-integrated Inertial Measurement Unit (IMU) with 3D-LiDAR to 

counteract the distortion points, drift, and accumulated errors generated by LiDAR, thereby enhancing positioning accuracy. 

After experimentation, the algorithm achieved a final positioning error of only 6.9cm, representing an approximately 80% 

improvement in positioning accuracy compared to the loosely coupled integration of the two sensors. 
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1. Introduction 

With the increasing demand for intelligent logistics, in-

dustrial robots AGV, integrating microcomputers, mechanical 

structures, and multiple sensors, have emerged. Through 

computer networks, they can achieve automatic/manual con-

trol, navigation, obstacle avoidance, and data exchange. Ac-

curate estimation of its pose using positioning sensors is cru-

cial for AGV's precise autonomous movement [1-4]. However, 

it is susceptible to significant errors due to the robot's me-

chanical dimensional inaccuracies, motion friction, and sen-

sor precision [5-8]. Utilizing a single sensor for indoor posi-

tioning of AGV robots is influenced by external factors such 

as obstacles, temperature, and friction, resulting in low ac-

curacy and weak robustness. Data fusion of different sensor 

advantages can significantly improve positioning accuracy 

[9-12]. 

Bader et al. proposed a fault-tolerant method for mul-

ti-sensor fusion in robots and autonomous systems, demon-

strating the mechanism's effectiveness in fault detection and 

system recovery [13]. Li et al. introduced a rapid point cloud 

registration method based on Voxel-SIFT and designed a 
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hybrid federated filter based on weighted least squares, 

significantly enhancing the indoor positioning accuracy of 

mobile robots using IMU/Vision/LiDAR navigation meth-

ods [14]. Xu et al. addressed the NLOS error impact of UWB 

and the cumulative error of LiDAR, proposing a 

UWB/LiDAR tightly coupled indoor positioning algorithm, 

effectively eliminating LiDAR's error accumulation and 

NLOS error impact, resulting in more precise indoor posi-

tioning in complex environments [15]. Wen et al. presented 

the Lidar-Inertial Navigation System Global Navigation 

Satellite System (LINS-GNSS) positioning method based on 

multi-sensor fusion, using LiDAR to address NLOS in static 

environments and dynamic objects, Inertial Navigation 

System (INS) to compensate for GNSS signal loss during 

positioning, and GNSS to correct INS cumulative errors, 

significantly reducing the root mean square error [16]. Zhao 

et al. proposed a new video-based intelligent vehicle 

self-positioning method, achieving higher accuracy and 

reliability at a lower cost through feature matching in con-

secutive frames, using the anti-blur algorithm Incremental 

Singular Value Decomposition (ISVD) and K-Nearest 

Neighbors (KNN) feature matching [17]. Zhang et al. in-

troduced a laser/MEMS IMU/odometer tightly coupled 

navigation algorithm, correcting the distorted point cloud 

generated by laser motion using pre-integrated 

MEMS/odometer data, resulting in a 0.62% decrease in 

positioning error on average [18]. Henok et al. utilized the 

Lidar Odometry and Mapping with Smoothing and Mapping 

(LIO-SAM) algorithm to fuse 3D LiDAR sensors and IMU, 

constructing 3D maps of indoor and outdoor environments 

and visualizing them, enabling precise movement of robots 

indoors and outdoors in a 3D map [19]. However, Wu et al. 

[20] evaluated centralized Simultaneous Localization and 

Mapping (SLAM) algorithms using the KITTI dataset and 

found that the LIO-SAM algorithm, designed for tight cou-

pling, relies on the accuracy of the IMU, and in the absence 

of other constraints, its errors continue to accumulate. In 

contrast, Liu et al. demonstrated a 49.8% increase in posi-

tioning accuracy in outdoor environments by integrating the 

Global Navigation Satellite System (GNSS) BeiDou satellite 

navigation system with LiDAR and map data using a graph 

optimization method [21]. 

In underground parking environments, GNSS is almost 

ineffective [22], where high positioning accuracy is required. 

Therefore, this paper proposes a method of incorporating 

W-EKF factors when tightly coupling IMU with LiDAR. Due 

to the various obstacles in the parking lot, the use of UWB 

sensors will inevitably be affected by NLOS [23, 24], result-

ing in the unreliability of W-EKF factors. Therefore, in the 

map pose optimization when tightly coupling IMU after 

pre-integration with LiDAR, the distance between AGV ro-

bots and UWB coordinates is evaluated. When NLOS occurs, 

the W-EKF algorithm reduces the update step weight of UWB 

until LOS occurs, and then extracts the W-EKF factors to 

integrate them into the map optimization framework, thereby 

ensuring the reliability of IMU output poses and enhancing 

the positioning accuracy and mapping robustness of AGVs in 

underground parking environments. 

2. Single Sensor Observation Model 

A. The Predictive Motion Model of the Wheeled Odome-

try System 

As shown in Figure 1, the AGV platform is equipped with 4 

Mecanum wheels, each driven by an independent servo motor. 

Therefore, the linear velocities along the X and Y axes, as well 

as the rotational velocity of the platform itself, can be calcu-

lated using the forward kinematics equations (1): 

 
Figure 1. Mecanum wheel motion diagram. 
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In equation (1),𝑉𝑥  and 𝑉𝑦  represent the velocity of the 

AGV platform in the x and y directions, while 𝜔𝑟 denotes the 

angular velocity of the platform. The 𝑣𝑖(i=1,2,3,4) represent 

the linear velocities of the four wheels, and a and b are the 

distances between the front wheel center and the side wheel 

center, where a=718 and b=1260. Assuming the control pe-

riod of the system is ∆t, the motion model of the odometry can 

be expressed by Formula (2): 

{

𝑋𝑘+1 = 𝑋𝑘 + cos 𝜃𝑘+1 ∗ ∆𝑡 ∗ 𝑉𝑥
𝑌𝑘+1 = 𝑌𝑘 + sin 𝜃𝑘+1 ∗ ∆𝑡 ∗ 𝑉𝑦

𝜃𝑘+1 = 𝜃𝑘 + 𝜔𝑟 ∗ ∆𝑡

      (2) 

B. Ultra-Wideband Observation Model 

This paper employs the Time of Arrival (TOA) algorithm 

for UWB positioning. Initially, the base station sends a signal 

to the positioning tag, and the time is recorded as 𝑡1, When 

the tag returns the signal, the time is recorded as 𝑡2, The time 

difference(𝑡2 − 𝑡1), multiplied by the speed of light c yields 

the distance. 
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Figure 2. TOA model. 

In this paper, 4 base stations 𝐴0, 𝐴1, 𝐴2, 𝐴3, As shown in 

Figure 2, at a given time, each base station draws a circle with 

radius𝑅0, 𝑅1, 𝑅2, 𝑅3and the circles intersect at a point, which 

represents the position of the tag TAG. Assuming the coor-

dinates of tag 𝑇𝐴𝐺𝑖  are (𝑥𝑡𝑖 , 𝑦𝑡𝑖) (i=0,1) and the coordinates 

of base station 𝐴𝑖  are (𝑥𝐴𝑖 , 𝑦𝐴𝑖)  (i=0,1,2,3). the pose 

(𝑥𝑡0 , 𝑦𝑡0) and the orientation angle θ of the AGV platform can 

be obtained using the following formulas. 

{
 
 
 
 
 

 
 
 
 
 𝑅0 = √(𝑥𝑡0 − 𝑥𝐴0)

2+(𝑦𝑡0 − 𝑦𝐴0)
2 = 𝑐 ∗ (𝑡2 − 𝑡1) 2⁄

𝑅1 = √(𝑥𝑡0 − 𝑥𝐴1)
2+(𝑦𝑡0 − 𝑦𝐴1)

2 = 𝑐 ∗ (𝑡2 − 𝑡1) 2⁄

𝑅2 = √(𝑥𝑡0 − 𝑥𝐴2)
2+(𝑦𝑡0 − 𝑦𝐴2)

2 = 𝑐 ∗ (𝑡2 − 𝑡1) 2⁄

𝑅3 = √(𝑥𝑡0 − 𝑥𝐴3)
2+(𝑦𝑡0 − 𝑦𝐴3)

2 = 𝑐 ∗ (𝑡2 − 𝑡1) 2⁄

𝜃 = arctan(
𝑦𝑡0−𝑦𝑡1

𝑥𝑡0−𝑥𝑡1
)

   (3) 

The distance between the tag TAG and the base station can 

be obtained from equation (3) to yield the following formula 

(4). 

𝑑𝑖 = 𝑅𝑖 − 𝑑𝜀 − 𝑑𝑁𝐿𝑂𝑆                                (4) 

In equation (2), 𝑑𝑖(𝑖 = 1,2,3,4) represents the distances 

between the UWB tag TAG and each base station;𝑅𝑖denotes 

the ranging distance of UWB, as derived from equation (1); 

𝑑𝜀is the measurement error of UWB itself; and 𝑑𝑁𝐿𝑂𝑆 is the 

measurement error of non-line-of-sight (NLOS) distance. 

C. IMU motion model 

The inertial measurement unit (IMU) sensor primarily 

measures angular velocity and acceleration. However, due to 

its own bias, white noise, and the influence of gravity, the 

measured value equals the true value plus the corresponding 

bias and white noise. Therefore, the measurement formulas 

for angular velocity and acceleration from the IMU are de-

rived from equation (5): 

{
𝜔̂𝑣 = 𝜔𝑣 + 𝑏𝑣

𝜔 + 𝑛𝑣
𝜔

𝑎̂𝑣 = 𝑅𝑣
𝐽𝑊 ∗ (𝑎𝑣 − 𝑔) + 𝑏𝑣

𝑎 + 𝑛𝑣
𝑎                     (5) 

Where 𝜔̂𝑣 and 𝑎̂𝑣 represent the raw measurements of the 

IMU, subject to slowly varying bias errors 𝑏𝑣
𝜔 and 𝑏𝑣

𝑎, as well 

as Gaussian white noise errors 𝑛𝑣
𝜔 and 𝑛𝑣

𝑎 . 𝜔𝑣  and 𝑎𝑣  de-

note the true values of the IMU,𝑅𝑣
𝐽𝑊

 is the rotation matrix 

from the world coordinate system W to the robot coordinate 

system J, and g is the constant gravity vector in the world 

coordinate system W. 

The measurement results of the IMU can be obtained from 

Formula (5), which are then used for IMU preinte-gration. 

Within the time interval (𝑡 + ∆𝑡), the robot's velocity ∆𝑣𝑡+∆𝑡、

position ∆𝑝𝑡+∆𝑡  and rotation ∆𝑅𝑡+∆𝑡  can be derived from 

Formula (6): 

{

∆𝑣𝑡+∆𝑡 = 𝑅𝑡
Τ ∗ (𝑣𝑡+∆𝑡 − 𝑣𝑡 − 𝑔 ∗ ∆𝑡)

∆𝑝𝑡+∆𝑡 = 𝑅𝑡
Τ ∗ (𝑝𝑡+∆𝑡 − 𝑝∆𝑡 − 𝑣𝑡 ∗ ∆𝑡 −

1

2
𝑔 ∗ ∆𝑡2)

∆𝑅𝑡+∆𝑡 = 𝑅𝑡
Τ𝑅𝑡+∆𝑡

  (6) 

D. LiDAR point cloud scanning 

When using LiDAR scanning, the first step is feature ex-

traction, where the points within the scanned area are assessed 

for their curvature to determine whether they represent edge 

features or planar features. Points with higher curvature are 

identified as edge feature points, denoted as 𝐹𝑡
𝑒, while points 

with lower curvature are recognized as planar feature points, 

denoted as 𝐹𝑡
𝑝
. Assuming the scanning time is t, all the feature 

points within that time frame form a collective set denoted as 

𝐹𝑡, where 𝐹𝑡 = {𝐹𝑡
𝑒 , 𝐹𝑡

𝑝
}. 

3. Multi-Sensor Data Fusion Algorithm 

A. Fusion algorithm framework 

As shown in Figure 3, the algorithm framework is divided 

into three steps: 

(1) The IMU preintegration tightly couples the LiDAR's 

locally scanned point cloud data to eliminate point cloud 

distortion and obtain the IMU preintegration factors and 

LiDAR odometry factors. 

(2) Using the W-EKF algorithm to fuse data from wheel 

odometry and UWB, where the wheel odometry provides 

predicted step data and UWB provides updated step data. 

(3) When tightly coupling the IMU with LiDAR, the 

W-EKF factors are opportunistically incorporated to eliminate 

cumulative errors and enhance positioning accuracy. 
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Figure 3. Algorithm fusion frame diagram. 

B. Tightly coupling IMU with LiDAR 

a. Point cloud distortion correction 

When collecting data with LiDAR on a moving AGV 

power vehicle, the data is assumed to be gathered under the 

same pose, especially in garages with varying vehicle 

placements, leading to potential point cloud distortion. 

To address this issue, inspired by the research [25], the data 

collected by the IMU is pre-integrated to obtain the attitude 

and velocity changes within a unit time. Subsequently, by 

matching the times-tamps of the collected point cloud data 

with the corresponding IMU timestamps, the obtained attitude 

and velocity changes are used to correct the distortion. As-

suming the initial pose at time 𝑂𝑠
𝐵, corresponds to point 𝑝𝑠, 

after time 𝑡𝑖, the corresponding point is 𝑝𝑖 . The initial pose 

change is 𝑂𝑖
𝐵, and with the obtained attitude change 𝑅𝑖

𝐵  and 

velocity change 𝑇𝑖
𝐵 , distortion correction can be achieved 

using Formula (7): 

{
𝑂𝑖
𝐵 = 𝑂𝑠

𝐵 ∗ 𝑅𝑖
𝐵 ∗ (𝑡𝑖 ∗ 𝑇𝑖

𝐵)

𝑝𝑖 = 𝑂𝑖
𝐵Τ ∗ 𝑝𝑠

                   (7) 

b. Extraction of line and surface features to build a local 

map 

He area we scanned is a local area, and the calculation re-

sources will be heavily occupied by the stacking of a large 

number of local areas, making it difficult to calculate between 

laser radar frames and to add factors. Therefore, we introduce 

the concept of keyframes. Assuming the pose of an AGV is 

𝑋𝑡 , when its motion change exceeds the currently defined 

threshold (t+1), we select the laser radar frame 𝐹𝑡+1as the 

keyframe, associate it with the new state node 𝑋𝑡+1 of the 

AGV, and then discard the point cloud frames from time t to 

t+1. Using this method to add keyframes can balance map 

density and resource consumption, while keeping the factor 

graph in a relatively sparse state, making it highly practical for 

real-time nonlinear optimization. 

When the next state node 𝑋𝑡+1 appears, it needs to be as-

sociated with the keyframe 𝐹𝑡+1and added to the factor graph. 

Because the point cloud maps obtained are all in local areas, in 

order to improve matching accuracy and increase computa-

tional efficiency, n keyframes are extracted from the data 

scanned within a unit time t and saved in the keyframe set 

*𝐹𝑡−𝑛, 𝐹𝑡−𝑛+1, … , 𝐹𝑡−1, 𝐹𝑡+ . However, at this point, the 

keyframe set is in the robot′s coordinate system J, and it needs 

to be transformed into the world coordinate system W. 

Therefore, I transform each keyframe using the pose trans-

formation *𝑇𝑡−𝑛, 𝑇𝑡−𝑛+1, … , 𝑇𝑡−1, 𝑇𝑡+ to the keyframes in the 

world coordinate system W and store them in the local map 

keyframe set 𝑀𝑡. In Section 2.4, the scanned feature points 

are divided into edge feature points 𝐹𝑡
𝑒  and planar feature 

points 𝐹𝑡
𝑝

. The keyframe sets 𝑀𝑡
𝑒  and  𝑀𝑡

𝑝
 are obtained 

through pose transformation. The next state keyframe 𝐹𝑡+1 

obtained by scanning, {𝐹𝑡+1
𝑒 , 𝐹𝑡+1

𝑝
}, is matched with it, and the 

distances 𝐷𝑒𝑖  of the feature points to their feature edges and 

http://www.sciencepg.com/journal/ijssn
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the distances 𝐷𝑝𝑖  to the feature planes can be calculated. The 

formula is shown as (8): 

{
 

 𝐷𝑒𝑖 =
|(𝑃𝑡+1,𝑖

𝑒 −𝑃𝑡,𝑢
𝑒 )×(𝑃𝑡+1,𝑖

𝑒 −𝑃𝑡,𝑣
𝑒 )|

|𝑃𝑡,𝑢
𝑒 −𝑃𝑡,𝑣

𝑒 |

𝐷𝑝𝑖 =
|.𝑃𝑡+1,𝑖

𝑝
−𝑃𝑡,𝑢

𝑝
/∙.𝑃𝑡,𝑢

𝑝
−𝑃𝑡,𝑣

𝑝
/×.𝑃𝑡,𝑢

𝑝
−𝑃𝑡,𝑤

𝑝
/|

|.𝑃𝑡,𝑢
𝑝
−𝑃𝑡,𝑣

𝑝
/×.𝑃𝑡,𝑢

𝑝
−𝑃𝑡,𝑤

𝑝
/|

         (8) 

The points 𝑖, 𝑢, 𝑣 𝑎𝑛𝑑 𝑤 correspond to the feature points 

of 𝑃𝑡  in the keyframe set 𝑀𝑡 .𝑃𝑡+1,𝑖
𝑒 , 𝑃𝑡,𝑢

𝑒  𝑎𝑛𝑑 𝑃𝑡,𝑣
𝑒  are edge 

points on the edge keyframe set 𝑀𝑡
𝑒 , while 𝑃𝑡+1,𝑖

𝑝
, 𝑃𝑡,𝑢

𝑝
, 𝑃𝑡,𝑣

𝑝
 

𝑎𝑛𝑑 𝑃𝑡,𝑤
𝑝

 are plane points on the plane keyframe set 𝑀𝑡
𝑝

. 

After obtaining 𝐷𝑒𝑖  𝑎𝑛𝑑 𝐷𝑝𝑖 , the relative transformation 

∆𝑇𝑡,𝑡+1  between each frame of LiDAR can be calculated 

using the least squares formula (9) and equation (10): 

𝑚𝑖𝑛
𝑇𝑇+1

{
∑

𝑃𝑡+1,𝑖
𝑒 ∈ 𝑀𝑡+1

𝑒 𝐷𝑒𝑖 +
∑

𝑃𝑡+1,𝑖
𝑝

∈ 𝑀𝑡+1
𝑝 𝐷𝑝𝑖           (9) 

∆𝑇𝑡,𝑡+1 = 𝑇𝑡
Τ𝑇𝑡+1                (10) 

At this stage, a local map can be constructed, obtaining the 

coordinates of the AGV robot's position (𝑥𝑘 , 𝑦𝑘) as well as a 

specific UWB coordinate (𝑥𝐴𝑖 , 𝑦𝐴𝑖). Subsequently, the cur-

rent distance 𝑑𝑙 between the AGV and the UWB coordinate 

can be calculated from formula (11). 

𝑑𝑙 = √(𝑥𝑘 − 𝑥𝐴𝑖)
2
+ (𝑦𝑘 − 𝑦𝐴𝑖)

2
          (11) 

C. W-EKF factor 

For the data collected from UWB and wheel odometry, the 

W-EKF algorithm is employed for data fusion, and W-EKF 

factors are outputted. These factors are then transformed into 

Cartesian coordinates and added to an appropriate node in the 

factor graph to mitigate the accumulated errors resulting from 

the tight coupling in section 3.2. The entire process consists of 

two steps: the prediction step and the update step. In the pre-

diction step, the wheel odometry data is processed, followed 

by the use of UWB data as observation for data update. 

However, due to the potential NLOS-induced errors in the 

UWB data during the update step, W factors are introduced to 

redistribute the weights of the observations. 

State prediction 

a. The motion model of the AGV robot at time t+1 can be 

obtained from equation (12): 

𝑥𝑡+1 = 𝑓(𝑥𝑡 , 𝑢𝑡+1) + 𝑤𝑡            (12) 

The function f represents the kinematics of the AGV robot, 

where 𝑥𝑡  𝑎𝑛𝑑 𝑥𝑡+1 denote the pose of the AGV robot at time 

t and t+1, respectively, given by ,𝑥, 𝑦, 𝜃-Τ. The control input 

for the AGV robot is denoted as 𝑢𝑡+1 = [𝑣𝑥, 𝑣𝑦 , 𝜔𝑦𝑎𝑤], and 

w_t represents the Gaussian noise at time t. 

(1) The estimated pose of the AGV robot at time t+1 can be 

obtained from equation (13): 

𝑥̂𝑡+1
− = 𝑥̂𝑡 + [

cos 𝜃𝑡 − sin 𝜃𝑡 0
sin 𝜃𝑡 cos 𝜃𝑡 0
0 0 1

] [

𝑣𝑥
𝑣𝑦
𝜔𝑦𝑎𝑤

] ∗ Δ𝑡   (13) 

Where 𝑥̂𝑡+1
− represents the predicted pose estimation of the 

AGV robot at time t+1, and 𝑥̂𝑡 denotes the best pose state 

value of the AGV robot at time t. 

The prior estimate covariance matrix of the AGV robot's 

pose prediction step is given by equation (14): 

𝑃𝑡+1
− = 𝐹𝑃𝑡𝐹

Τ + 𝑄𝑜𝑑𝑜𝑚                   (14) 

Where 𝑃𝑡 is the process noise at pose 𝑥𝑡, F is the Jacobian 

matrix linearizing 𝜃𝑡, and 𝑄𝑜𝑑𝑜𝑚 is the covariance matrix of 

the wheel odometry noise. 

𝐹 = [

1 0 [−𝑣𝑥 ∗ sin 𝜃𝑡 − 𝑣𝑦 ∗ cos 𝜃𝑡] ∗ Δ𝑡

0 1 [𝑣𝑥 ∗ cos 𝜃𝑡 − 𝑣𝑦 ∗ sin 𝜃𝑡] ∗ Δ𝑡

0 0 1

] 

𝑄𝑜𝑑𝑜𝑚 = [
0.02 0 0
0 0.01 0
0 0 0.95

]  

b. Status Updates 

At time t+1, the UWB provides position information as 

,𝑥𝑡+1,𝑈𝑊𝐵 ,  𝑦𝑡+1,𝑈𝑊𝐵 ,  𝜃𝑡+1,𝑈𝑊𝐵  - , and the wheel odometry 

encoder feedback provides position information as 

,𝑥𝑡+1,𝑜𝑑𝑜𝑚 , 𝑦𝑡+1,𝑜𝑑𝑜𝑚 , 𝜃𝜃𝑡+1,𝑜𝑑𝑜𝑚 -. The observation model at 

this time is shown in equation (15): 

𝑍𝑡+1 = 𝑊 [

𝑥𝑡+1,𝑈𝑊𝐵
𝑦𝑡+1,𝑈𝑊𝐵
𝜃𝑡+1,𝑈𝑊𝐵

] + (1 −𝑊) [

𝑥𝑡+1,𝑜𝑑𝑜𝑚
𝑦𝑡+1,𝑜𝑑𝑜𝑚
𝜃𝑡+1,𝑜𝑑𝑜𝑚

] + 𝑣𝑡+1  (15) 

𝑍𝑡+1 represents the observation value of UWB at time t+1, 

and 𝑣𝑡+1 denotes the corresponding observation noise. W is 

the weight matrix used to adjust the observation model based 

on whether UWB experiences NLOS. 

𝑊 = [

𝑊𝑥 0 0
0 𝑊𝑦 0

0 0 𝑊𝑦𝑎𝑤

] 

From (4) and (11), 𝑑𝑖  and 𝑑𝑙  can be obtained, and the 

following definitions are obtained by extrapolation: 

𝑊𝑖 = {

1, |𝑑𝑖 − 𝑑𝑙| ≤ 𝑒𝑒𝑟𝑟1
0.51, 𝑒𝑒𝑟𝑟1 ≤ |𝑑𝑖 − 𝑑𝑙| ≤ 𝑒𝑒𝑟𝑟2

0, |𝑑𝑖 − 𝑑𝑙| ≥ 𝑒𝑒𝑟𝑟2

}  

Where 𝑒𝑒𝑟𝑟1、𝑒𝑒𝑟𝑟2  is the empirical threshold and con-

stant greater than 0, when |𝑑𝑖 − 𝑑𝑙| reaches a certain error 
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value 𝑒𝑒𝑟𝑟2 when the system is judged to exist NLOS, the 

value will be excluded, when |𝑑𝑖 − 𝑑𝑙|  in the error value 

𝑒𝑒𝑟𝑟1、𝑒𝑒𝑟𝑟2when the NLOS does not exist, but the LiDAR 

data there are errors, this time, observation model The con-

fidence level is taken as 0.51, and the confidence level of 

UWB data is taken as 1 when |𝑑𝑖 − 𝑑𝑙| is less than the em-

pirical threshold 𝑒𝑒𝑟𝑟1 and the W-EKF factor is output only 

when the confidence level is taken as 1. 

(1) Calculate the Kalman gain 𝐾𝑡+1 equation as shown in 

(16): 

𝐾𝑡+1 = 𝑃𝑡+1
− ∗ Δ𝐻Τ ∗ (𝐻𝑃𝑡+1

− Δ𝐻Τ + 𝑅𝑡+1)
−1     (16) 

where Δ𝐻 is the Jacobian matrix of the observation model, 

from which Δ𝐻 is a 3∗3 unit array, and𝑅𝑡+1 is the covariance 

matrix of the observation noise. 

𝑅𝑡+1 = [
0.05 0 0
0 0.05 0
0 0 0.05

] 

(2) AGV robot a posteriori state correction estimation 

equation: 

𝑥̂𝑡+1 = 𝑥̂𝑡+1
− + 𝐾𝑡+1 ∗ (𝑍𝑡+1 − 𝑥̂𝑡+1

− )        (17) 

(3) Obtain the covariance matrix of the posterior estimates 

after the predicted values have been updated: 

𝑃𝑡+1 = (𝐼 − 𝐾𝑡+1) ∗ 𝑃𝑡+1
−                 (18) 

where I is a 3*3 unit array. 

D. Algorithm Fusion Flowchart 

The algorithm fusion process is shown in Figure 4, when 

LiDAR is activated, the IMU pre-integrates the acquired data 

and distorts the point cloud data to obtain the LiDAR odom-

etry factor and IMU pre-integration factor, and obtains the sub 

keyframes as well as constructs the sub-map. At this time, the 

LiDAR/IMU tightly coupled data begin to generate cumula-

tive errors over time, which are fused by Odom and UWB 

using the W-EKF algorithm and output the W-EKF factor to 

eliminate the cumulative errors when |𝑑𝑖 − 𝑑𝑙| ≤ 𝑒𝑒𝑟𝑟1 until 

the construction of the sub-map is completed. 

 
Figure 4. Flowchart of LiDAR/IMU tight coupling plus W-EKF factor algorithm. 
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4. Experiment 

A. Experimental platforms 

The experiment utilized an AGV robot equipped with 

Mecanum wheels, as shown in Figure 5. The AGV mobile 

charging robot is primarily controlled by the autonomously 

developed MSO multi-axis motion controller, which regulates 

the motors through the CAN open bus [26]. It is equipped with 

the NVIDIA Jetson Nano running the ROS robot operating 

system, and is connected to sensors including the C16 laser 

radar, IMU, odometry, and UWB positioning system through 

the WAN interface and USB, to establish the experimental 

platform. The system architecture is illustrated in Figure 6. 

 
Figure 5. AGV Mobile power bank. 

 
Figure 6. AGV hardware system. 

B. Experimental programme 

 
Figure 7. Experimental site. 

In order to verify the effectiveness of the algorithm, a plant of 

Jiangsu Haihong Intelligent Technology Co., Ltd. is selected as a 

test site, and a single sensor as well as the data fusion algorithm 

of this paper are tested separately under the same conditions to 

prove whether the algorithm is effective or not, and the site is 

shown in Figure 7. Due to the memory size of the controller as 

well as the operational efficiency, the construction of a 

two-dimensional graph was chosen to carry out the test. 

By using socket to send commands to control the movement 

of the AGV mobile charging robot, mapping was conducted for 

the right-hand side and left-hand side factories, as well as 

mapping from the entrance on the right-hand side of the factory 

to the entrance on the left-hand side, with the robot moving to 

complete the mapping. As shown in Figure 8, mapping was 

performed using LiDAR sensor with UWB data source, re-

sulting in partial map loss, drift in the lower right corner of the 

map, and very low accuracy in obstacle recognition, with the 

arranged obstacles identified as a single entity. Figure 9 shows 

the mapping results after data fusion of odometry and LiDAR 

sensor, with slightly less scene loss compared to Figure 8, and 

slightly more obvious arrangement of obstacles, with minor 

drift still observed in the lower right corner. Figure 10 presents 
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the mapping results using the algorithm proposed in this paper, 

covering the entire factory, clearly depicting the arrangement of 

production machinery, with almost no drift in the mapping. The 

mapped outline is clear, with minimal overlap except for the 

positions of the factory doors, accurately describing the real 

environment of the factory. 

 
Figure 8. Mapping of the right factory. 

 
Figure 9. Mapping of the left factory. 

 
Figure 10. Mapping of the complete factory. 

To further validate the performance of the combined posi-

tioning algorithm, point-to-point navigation experiments were 

conducted at a speed of 4cm/s, with steering controlled 

manually using a joystick after modifying the map parameters. 

Three specific motion paths were designed for Figure 8, 9, and 

10, and sensor data was recorded using rosbag. The theoreti-

cal and actual paths were compared to obtain Figure 11, 12, 

and 13. Each figure selected five feature points, denoted as 

ABCDE, representing the gaps between the arranged ma-

chinery, the edges of a particular obstacle, and the end point of 

the mapped path. In Figure 11, the UWB transceivers were 

placed at the four corners of the map, resulting in minimal 

drift error as the AGV mobile charging robot reached points A 

and B. However, when moving toward point C, the occurrence 

of a large obstacle led to non-line-of-sight (NLOS) conditions, 

causing significant deviations between the actual and theo-

retical paths, persisting until point E. Figure 12 utilized only 

odometry and LiDAR sensors for positioning. As the path 

length increased, the cumulative error grew, eventually 

causing the deviation between the theoretical and actual paths 

to exceed acceptable limits after passing point B. 

 
Figure 11. UWB/LiDAR. 

 
Figure 12. Odometry/LiDAR. 

 
Figure 13. IMU/LiDAR/W-EKF. 
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Similar to Figure 11 and 12, Figure 13 was set up with 11 

similar feature points (A-K) and navigated sequentially using a 

gamepad for steering control. As depicted in the figure, the im-

proved algorithm led to reduced errors. Even in segments CD 

and DE, where large obstacles were present, stable localization 

was achieved. The theoretical path closely aligned with the ac-

tual path in more open sections such as GH and KJ, providing a 

good reflection of the factory environment. Error analysis of 

different sensor localization combinations was computed from 

the rosbag data, resulting in Figure 14. The experimental results 

indicate that UWB exhibited NLOS errors, with significant de-

viation caused by a large obstacle from point C to point E. The 

presence of cumulative errors in the odometry led to substantial 

deviations from the theoretical path in the latter half of segment 

CD and segment DE as the distance increased. Although the 

proposed localization combination algorithm exhibited slight 

deviations, the errors were small, and the motion path closely 

approximated the reference path. 

The root mean square error (RMSE) of the UWB/LiDAR 

fusion positioning is calculated to be 36.3cm, while that of the 

Odometry/LiDAR fusion positioning is 43.4cm, and the fu-

sion algorithm proposed in this paper achieves an RMSE of 

6.9cm. Experimental results demonstrate that the proposed 

algorithm provides higher positioning accuracy and robust-

ness for the AGV mobile charging robot. 

 
Figure 14. Error comparison chart. 

Table 1. Error Comparison Table. 

Sensor combination error  

comparison 

Root mean square mean 

error (cm) 

UWB/LiDAR 36.3 

odometry/LiDAR 43.4 

IMU/LiDAR/W-EKF 6.9 

5. Conclusion 

Aiming at the positioning accuracy of AGV mobile charg-

ing treasure, this paper proposes a multi-sensor data fusion 

algorithm. Aiming at the cumulative error existing in the 

single sensor IMU itself and the problem of UWB generating 

NLOS in the plant with complex working environment and 

LiDAR generating aberration in the point cloud scanning, a 

fusion algorithm that introduces the W-EKF factor in the tight 

coupling of IMU pre-integration and LiDAR is proposed, 

which changes the sub-map established by UWB in the up-

dating step by means of the encoder feedback and the point 

cloud of LiDAR. The weight of the UWB at the update step is 

changed by the encoder feedback and the sub-map created by 

the LiDAR point cloud to improve the accuracy of the W-EKF 

factor. The algorithm is experimentally verified on an inde-

pendently developed AGV mobile charging treasure, and the 

experimental results show that the algorithm significantly 

improves the positioning accuracy of the AGV mobile 

charging treasure compared to the fusion of data from a single 

sensor or two sensors under simple loose coupling, thus ver-

ifying the effectiveness of the method. 
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