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Abstract: With the development of Internet of Things (IoT) technology and its vast applications in ship transportation systems, 

such as the Automatic Identification System (AIS), a large quantity of ship trajectory data have been recorded and stored. 

Nowadays ship transportation has also entered the age of big data, which can support IoT applications in Intelligent 

Transportation System (ITS), e.g. traffic monitoring, fleet management and traffic safety enhancement. However, the redundancy 

of ship trajectory data considerably reduces the effectiveness and efficiency of large scale traffic data storage, mining and 

visualization. Therefore, compression processing of the data becomes a very important issue for these applications. Because ship 

trajectory is a type of vector data, employing the vector data compression algorithms is an efficient way to solve the data 

redundancy problem. In this paper, the pseudo-code of five typical vector data compression algorithms for ship trajectory data 

compression is introduced. The performances of these algorithms were tested by the compression experiments of actual ship 

trajectories in the Qiongzhou Strait. The results show that ships’ speeds and rate of turns, the requirement of real time processing 

can affect the option of the most appropriate algorithm, and the algorithm selection in different applications is suggested. The 

results and conclusions lay the foundation for the future development of ship transportation intelligentization. 
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1. Introduction 

Maritime transport plays a vital role in global supply 

chains. The 50 years of Review of Maritime Transport 1968–

2018 published by United Nations Conference on Trade and 

Development (UNCTAD) notes that shipping carries the vast 

majority of international trade with its share ranging between 

80 and 90 per cent of trade. In terms of trade value, the 

shipping share around 60 to 70 per cent of trade. The 

importance of maritime transport for trade and development 

cannot be overemphasized. Ocean shipping will remain the 

most important mode of transport for international 

merchandise trade. However, maritime transport is facing 

many challenges to ensure a high level of efficiency, safety 

and environmental protection, which need academia to 

develop supporting models and methods of analysis [1, 2]. 

With the development of information technology and its 

vast applications in transportation, trajectory data becomes 

easy to be obtained and have been widely used in road, 

railway and air traffic researches and practical applications. 

In marine transportation, ships' trajectories are becoming one 

of the main data sources for studying the characteristics of 

ship traffic behaviors, which will be an important basis for 

supporting the research and application of maritime transport 

in the future. At present, with the popularity of Automatic 

Identification System (AIS), a large number of ship trajectory 

data has been recorded and stored. Nowadays, ship 

transportation has also entered the age of big data [3-6]. 



43 Le Qi and Yuanyuan Ji:  Ship Trajectory Data Compression Algorithms for Automatic   

Identification System: Comparison and Analysis 

Furthermore, increasingly numerous methods, theories and 

technologies of big data, knowledge mining and machine 

learning have been proposed. Therefore, how to take full use 

of the data to promote the intelligent of marine transportation 

becomes one of the most important research topics. 

Nonetheless, the AIS equipment of a ship generally publishes 

a message within every 2 s to 6 min, which makes the 

trajectory data from the AIS notably large. Because the AIS 

has a high frequency of information, the redundant problem 

of trajectory data from the AIS is serious [7-9]. This problem 

makes it difficult to be used in research and actual 

applications. Therefore, the ship trajectory data compression 

becomes particularly important [10, 11]. 

To compress the ship trajectory data, several methods have 

been proposed. Because ship trajectory compression quality 

significantly depends on the threshold selection, an adaptive 

Douglas Peucker algorithm with automatic thresholding for 

AIS-based ship trajectory compression was proposed [12-14]. 

Second, the reconstruction approach can also be used to 

reduce the volume of the data. Some algorithms were 

proposed to reconstruct a ship’s trajectory by AIS data. In 

these algorithms, not only the navigational behavior could be 

clearly shown in the reconstructed trajectory, but also the 

data volume would decrease [15-17]. Third, the semantic 

trajectory compression method, which is used for the 

movement trajectories in an urban environment, has been 

used for data reduction techniques applied on AIS data [18, 

19]. Besides, there are also many other methods used to 

compress ship trajectory data, e.g. clustering method [20, 21], 

piecewise linear segmentation method [22], directed acyclic 

graph method [23], direction-preserving trajectory 

simplification method [24], improved sliding window 

algorithm [25], etc. 

It is noteworthy that, as a type of vector data, ship 

trajectory data can be compressed by the vector data 

compression algorithms, which can compress data very 

effectively for its advantages of easy implementation and low 

time complexity. Besides, it can also be used as a 

pre-processing of the above compression algorithms in 

practical applications. Generalized vector data compression 

should include the storage compression and re-sampling of 

the vector data [26, 27]. The concept of storage compression 

reduces the amount of vector data by converting the data type 

or file type. The concept of re-sampling is to extract subset B 

from set A which is a collection of the points that compose 

the vector graphics. Subset B should reflect the original data 

set A within a certain accuracy as much as possible and 

should ensure that the points of subset B are as little as 

possible. 

At present, the most widely used algorithms for vector data 

are mainly the choosing interval points algorithm, limiting 

vertical distance algorithm, limiting angle algorithm, offset 

angle algorithm, Douglas Peucker algorithm, grating 

algorithm etc. [28-30]. The research on ship trajectory 

compression mainly focuses on the application and 

improvement of the Douglas Peucker algorithm, and some 

problems in the practical application of ship trajectory data 

were effectively solved. However, many other vector data 

compression algorithms have not been applied to ship 

trajectory compression. More testing and analysis of these 

algorithms in ship trajectory compression are needed. 

Moreover, different algorithms have different characteristics, 

which may be highly effective in some specific data 

compression applications. Therefore, it is necessary to 

introduce the above vector data compression algorithms and 

to study the advantages and disadvantages of these 

algorithms in ship trajectory compression through 

experiments. The limiting angle algorithm has poor 

performance for vector data when the points are dense, so it 

is not been tested in this paper. The other algorithms are of 

five typical vector data compression algorithms, and many of 

the new vector data compression algorithms were proposed 

based on the five algorithms. Therefore, the five algorithms 

and their pseudo-code for ship trajectory data compression 

will be introduced. The data compression experiments for 

actual ship trajectories from AIS will be done, and the results 

will be used to analyze and compare the algorithms. 

The remainder of this paper is organized as follows. Section 2 

introduces the pseudo-code of the five algorithms for ship 

trajectories data compression. Section 3 presents the data 

compression experiments in which the performances of the 

algorithms are tested, and the results are analyzed and discussed. 

The study's conclusions are summarized in Section 4. 

2. Compression Algorithms 

Suppose a ship's trajectory is composed by a set of points in 

chronological order, which can be represented by set A = {p1, 

p2, …, pn}. p is a point on the trajectory. The subscript 

represents the number of the point ordered by time. n is the 

total number of points on the trajectory. The ship sailed 

through each point in chronological order. 

Let subset B stand for the compression result of set A. The 

pseudo-code of five typical vector data compression 

algorithms for ships' trajectories data compression is as 

follows. 

2.1. Choosing Interval Points Algorithm (CIPA) 

The basic idea of the choosing interval points algorithm is 

to retain a point in interval k points or an inter-equal distance d 

on the trajectory. Let k stand for the number of interval points. 

The pseudo-code of this algorithm is 

Input: Set A, n, k 

Output: Subset B 

Initialize: � ← ∅ 

(1) � = ⌊(� − 1)/
⌋. 
if n equals mk + 1 then 

(2) � ← ���, ����, ⋯ , ������. 

else 

(3) � ← ���, ����, ⋯ , �����, ���. 

end 

⌊(� − 1)/
⌋ rounds to the nearest integer less than or 

equal to (� − 1)/
 . This algorithm supports real-time 

compression processing. 
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2.2. Limiting Vertical Distance Algorithm (LVDA) 

The basic idea of the limiting vertical distance algorithm is to 

select three consecutive points and calculate the vertical distance 

between the middle point and the straight line between the other 

two points. Let d stand for the vertical distance. Next, compare d 

with the distance threshold dthreshold. If d≥dthreshold, retain the 

middle point. Otherwise, if d< dthreshold, delete the middle point. 

After that step, select the second three consecutive points and 

repeat the process until all of the points on the trajectory are 

processed. The pseudo-code of this algorithm is 

Input: Set A, n, dthreshold 

Output: Subset B 

Initialize: � ← �� , �� ← ��, �� ← ��, �� ← ∅, � ← ∅ 

for � = 3 to � do 

(1) �� ← �#  

(2) � ← calculate the vertical distance from �� to the 

line ���� . 

if � ≥ ��%&'�%()*  then 

(3) Add the point �� to set B, � ∪ ��. 

(4) Update the �� ,  ��  and ��: �� ← ��, �� ←
�� , �� ← ∅. 

(5) Update the �� and ��: �� ← �� , �� ← ∅. 

end 

end 

This algorithm supports the real-time compression 

processing. 

2.3. Offset Angle Algorithm (OAA) 

The basic idea of the offset angle algorithm is to select 

three consecutive points, such as p1, p2 and p3. After that step, 

calculate the degree of the angle ∠p1p2p3. Next, compare it 

with a given thresholdθthreshold. If ∠p1p2p3<θthreshold, retain the 

middle point p2, otherwise delete p2. The pseudo-code of this 

algorithm is 

Input: Set A, n, θthreshold 

Output: Subset B 

Initialize: � ← �� , �� ← ��, �� ← ��, �� ← ∅, . ← ∅ 

for � = 3 to � do 

(1) �� ← �#  

(2) α ← calculate the angle of ∠������ . 

if . < :�%&'�%()*  then 

(3) Add the point �� to set B, � ∪ ��. 

(4) Update the �� ,  ��  and ��: �� ← ��, �� ←
�� , �� ← ∅. 

(5) Update the �� and ��: �� ← �� , �� ← ∅. 

end 

end 

This algorithm supports real-time compression processing. 

When the point is dense or the course changes slowly, the 

algorithm may delete all the points on the curved segment and 

lead to compression error. To compensate for this defect, the 

course change can be highlighted by increasing the distance 

between the three selected points. 

2.4. Douglas Peucker Algorithm (DPA) 

The basic idea of the Douglas Peucker algorithm is to 

connect the first point p1 and the last points pn of the 

trajectory with a straight line. After that step, calculate the 

distance between the other points in the middle to this 

straight line. Next, discover the maximum distance dmax and 

the corresponding point pi. Then, compare dmax with dthreshold. 

If dmax < dthreshold, delete all points between the first and last 

points. If dmax≥dthreshold, retain the point pi and divide the 

trajectory into two segments {p1, …, pi} and {pi, …, pn}. 

Next, for each segment, repeat the above process until to the 

end. The pseudo-code of this algorithm is 

Input: Set A, n, dthreshold 

Output: Subset B 

Initialize: � ← ∅ 

function dp_algorithm(point set C) 

Initialize: Set ; ← ∅, m ← the number of points in set 

C, Set >� ← ∅, Set >� ← ∅. 

if � ≤ 2 

(1) return C. 

else 

(2) D ← calculate the distances from 

points  ��, ⋯ , ��B�  to the line ���� , 

where ���, ⋯ , ��� ∈ >. 

(3) Find the max value in set D, ��DE ← �FG�;�, 

and the corresponding point �# . 

if ��DE ≥ ��%&'�%()* then 

(4) >� ← ��� , ⋯ , �#�, >� ← ��# , ⋯ , ���. 

(5) return dp_algorithm(C1) ∪ dp_algorithm(C2). 

else 

(6) return ���, ��� 

end 

end 

end 

(7) � ← ��_FIJKL�Mℎ�O(P). 

(8) � ← unique(�). 

Where unique(B) returns a copy of the subset B that 

contains only the sorted unique observations. This algorithm 

does not support real-time compression processing. 

2.5. Grating Algorithm (GA) 

The basic idea of the grating algorithm is to define a 

fan-shaped region and judge whether the point on the 

trajectory is inside or outside the region. If it is inside, delete 

the related point. Otherwise, retain the related point. Let the 

caliber of the fan-shaped region is 2×dr. The pseudo-code of 

this algorithm is 

Input: Set A, n, dr 

Output: Subset B 

Initialize: B ← ��, �� ← ��, �� ← ��, �� ← ∅, :& ← ∅, 

:) ← ∅ 

for � = 3 to � do 

(1) :& ← :) ← arctanU�& ����⁄ W. 

(2) �� ← �# . 
if ��  on the right of vector ����YYYYYYYYZ then 

if ∠������ < :&  then 

(3) ∆:& ← :& − ∠������ . 

(4) �� ← �� , :& ← :) ← arctan\�& ]�]�⁄ ^. 
(5) :& ← min�:& , ∆:&�. 
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else 

(6) � ← � ∪ ��. 

(7) �� ← ��, �� � ��. 

end 

else 

if -������ 9 :) then 

(8) ∆:) � :) 	 -������ . 

(9) �� � �� , :& � :) � arctan\�& ]�]�⁄ ^. 
(10) :& � min�:& , ∆:&�. 

else 

(11) � � � + ��. 

(12) �� � ��, �� � �� . 

end 

end 

end 

This algorithm supports real-time compression processing. 

3. Compression Experiment 

This section will introduce the compression experiments 

based on the algorithms above. The results will be compared 

and analyzed. 

 

Figure 1. Ship trajectories in the Qiongzhou Strait. 

The data sample for experiments is from the position report 

messages of AIS. The update frequency of the message is 

related to the ships’ speed and the rate of turn (ROT). 

Therefore, the sample data should include the AIS messages 

when ships have different speeds and ROTs. Taking the 

trajectories of ships in the Qiongzhou Strait as an example, as 

shown in the bottom layer of Figure 1, it contains AIS data of 

ships with different navigational states. Five representative 

trajectories with obvious variations in speed and ROT were 

taken as the samples for the first experiments, as shown in the 

middle layer of Figure 1. And another two representative 

trajectories without obvious variations in speed and ROT were 

also taken as the samples for the second experiments, as 

shown in the top layer of Figure 1. 

Firstly, compress the five representative trajectories by the 

choosing interval points algorithm, limiting vertical distance 

algorithm, offset angle algorithm, Douglas Peucker algorithm 

and grating algorithm. When the data compression ratio is 20, 

the compressed trajectories and the mean of the points' 

displacements are shown in Figure 2(b)~(e). All the 

compressed trajectories can reflect the spatial distribution of 

the raw trajectories. However, there are also some different 

between the compression results. 

  

Figure 2. The five representative raw trajectories and compression results 

based on these algorithms, when the data compression ratio is 20. (a) raw 

trajectories; (b) CIPA; (c) LVDA; (d) OAA; (e) DPA; (f) GA. 

Figure 2(b) shows the compression result by the choosing 

interval points algorithm. The points are evenly distributed 

but some details on the corners are ignored. In contrast to this, 

the points on the corners are preferentially retained by the 

offset angle algorithm, as shown in Figure 2(d). However, the 

points on other segments are ignored. Therefore, the 

distribution of the points in Figure 2(b) and Figure 2(d) are 

not proper. Besides, the mean of the points' displacements of 

the two results are larger than others, which is 40.9 m for the 

choosing interval points algorithm and 35.2 m for the offset 

angle algorithm. 

The compression result by the limiting vertical distance 

algorithm, as shown in Figure 2(c), retains more details of the 

raw trajectories than that by the offset angle algorithm, but 

the improper distribution of points still remains and many 

points are concentrated on the corners. The mean of the 

points' displacements is 27.3 m, which is less than the above 

two algorithms. 

Figure 2(e) and Figure 2(f) show the compression results 

by the Douglas Peucker algorithm and the grating algorithm. 

The performances of the two algorithms are better than the 

above algorithms. The points are properly distributed, which 
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means that the spatial structural characteristics of the 

trajectories and details on the corners are preserved well. The 

mean of the points' displacements caused by the Douglas 

Peucker algorithm is minimum, which is 13.2 m. The point 

displacement caused by the grating algorithm is a litter larger 

than it, which is 16.5m. 

 

Figure 3. The two representative raw trajectories and compression results 

based on these algorithms, when the data compression ratio is 20. (a) raw 

trajectories; (b) CIPA; (c) LVDA; (d) OAA; (e) DPA; (f) GA. 

Secondly, compress the two representative trajectories, by 

the choosing interval points algorithm, limiting vertical 

distance algorithm, offset angle algorithm, Douglas Peucker 

algorithm and grating algorithm. When the data compression 

ratio is 20, the compressed trajectories and the mean of the 

points' displacements are shown in Figure 3 (b)~(e). All the 

compressed trajectories can reflect the spatial distribution of 

the raw trajectories. However, there are also some different 

between the compression results. 

For the choosing interval points algorithm, as shown in Figure 

3(b), some detail still cannot be retained. However, as there are 

no obvious corner on the two trajectories, the compression result 

is better than the result shown in Figure 2(b). The mean of the 

points' displacements reduces to 6.6 m. On the contrary, for the 

offset angle algorithm, because the feature points on the local 

segments have been ignored, the improper distribution of the 

points is enlarged. As shown in Figure 3(d), there are just two 

points are retained on lower trajectory. The mean of the points' 

displacements rises to 75.1 m. 

Similar to the compression result shown in Figure 2(c), the 

compression result by the limiting vertical distance algorithm 

is better than the offset angle algorithm but the improper 

distribution of the points is still exist. The mean of the points' 

displacements shown in Figure 3(c) is 51.4 m. 

Figure 3(e) and Figure 3(f) show the compression results 

by the Douglas Peucker algorithm and grating algorithm. The 

points distribution property of the two algorithm is still better 

the other algorithms. The important points on local segments 

are retained, and the detail variations of the two trajectories 

are preserved well. The mean of the points' displacements 

caused by Douglas Peucker algorithm is 5.0 m, which is still 

minimum in the results. The mean of the points' 

displacements caused by the grating algorithm is similar to 

the choosing interval points algorithm, which is 6.8 m. 

In summary, the performance of the offset angle algorithm 

is worse than the other algorithms. The performance of the 

limiting vertical distance algorithm is a little better than it. 

The performance of the choosing interval points algorithm is 

unstable, which is more suitable for the trajectories that are 

approximately straight lines. The performance of the Douglas 

Peucker algorithm and grating algorithm are better than other 

algorithms in the experiments. The data compression error 

caused by the Douglas Peucker algorithm is minimum, but it 

does not support real-time processing. Although the error 

caused by the grating algorithm is a little larger than the 

Douglas Peucker algorithm, it supports real-time processing. 

Therefore, when it needs to compress historical ship 

trajectory data, the Douglas Peucker algorithm is 

recommended, and when it needs to compress ship trajectory 

data in real time, the grating algorithm is recommended. 

4. Conclusions 

Several classic vector data compression algorithms are 

introduced, as well as their pseudo-code for ship trajectory 

compression. Through the experiment of ship trajectory data 

(from AIS) compression, the performances of these 

algorithms are analyzed. The advantages and disadvantages of 

these algorithms in compressing ship trajectory data are 

compared. The result shows that the performances of the 

Douglas Peucker algorithm and grating algorithm are better 

than the other algorithms. The Douglas Peucker algorithm is 

suitable for historical data compression. The grating algorithm 

is suitable for real-time data compression. When the 

trajectories are approximately straight line, the choosing 

interval points algorithm can be considered, because its 

performance will rise in this situation and it is suitable for both 

historical and real-time data compression. The research results 

provide a support for the selection of the algorithms in 

practical applications, e.g. ship traffic monitoring, safety 

enhancement and fleet management, based on AIS. 
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